
lable at ScienceDirect

International Journal of Thermal Sciences 48 (2009) 1978–1987
Contents lists avai
International Journal of Thermal Sciences

journal homepage: www.elsevier .com/locate/ i j ts
Entropy generation in turbulent natural convection due to internal heat
generation

Sheng Chen a,b,*, Manfred Krafczyk b

a State Key Lab of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
b Institute for Computational Modeling in Civil Engineering, Technical University, Braunschweig 38106, Germany
a r t i c l e i n f o

Article history:
Received 31 August 2008
Received in revised form
12 February 2009
Accepted 13 February 2009
Available online 18 March 2009

Keywords:
Entropy generation
Turbulent natural convection
Internal heat generation
Lattice Boltzmann method
* Corresponding author at: Institute for Computat
neering, Technical University, Braunschweig 38106, G

E-mail addresses: chen@irmb.tu-bs.de (S.
(M. Krafczyk).

1290-0729/$ – see front matter � 2009 Elsevier Mas
doi:10.1016/j.ijthermalsci.2009.02.012
a b s t r a c t

In this study numerical predictions of entropy generation in turbulent natural convection due to internal
heat generation in a square cavity are reported for the first time. Results of entropy generation analysis
are obtained by solving the entropy generation equation. The values of velocity and temperature, which
are the inputs of the entropy generation equation, are obtained by an improved thermal lattice-BGK
model proposed in this paper. The analyzed range is wide, varying from the steady laminar symmetric
state to the fully turbulent state. Distributions of entropy generation numbers, for various Rayleigh
numbers, Prandtl numbers, and Eckert numbers, are given.
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1. Introduction

Natural convection occurring in nature and many industrial
devices are driven by internal heating [1,2], ranging from the
mantle convection in the Earth [3,4] to the cooling of a molten
nuclear reactor core [5,6]. Natural convection due to internal heat
generation has been lately receiving increasing attention because of
its relevance to nuclear safety issues [5–8]. As discussed in Refs.
[6,8], an inadequate or prolonged absence of nuclear reactor core
cooling may cause core melting to occur in a light water reactor. The
core debris may heat up on account of the volumetric decay heat
generation to form a molten pool in natural convection. Conse-
quently, to predict the behavior of the convectional flow and to
optimally design the thermal systems are necessary in the nuclear
engineering [6,9].

The pioneers on this subject are Kulacki and his collaborators,
who conducted several experiments using Joule heating as a volu-
metric heat source [10,11]. In these experiments, which were
primarily applicable to the nuclear industry, heat transfer through
a horizontal fluid layer was assessed for different boundary cooling
ional Modeling in Civil Engi-
ermany.
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arrangements. Asfia et al. conducted experiments of natural
convection in a spherical cavity [12]. The working fluid was Freon-
113, which was heated with microwaves. The range of the Rayleigh
number (Ra) tested was between 2�1010 and 1.1�1014 at the
Prandtl (Pr) number 8. Recently, Lee et al. studied high modified
Rayleigh number natural convection with the aid of the simulant
internal gravitated material apparatus rectangular pool [6]. The
modified Ra based on the power input was varied from 109 to 1014.
The Pr of working fluid ranged from 4 to 8 for water, and 0.7 for air.
In their work, particular attention was paid to the influence of Pr on
natural convection heat transfer in the pool. The relation between
the Nusselt number (Nu) and the modified Ra was determined for
different boundary conditions in the rectangular pool.

However, it is still a challenge for experiments to capture the
turbulent flow motion at high Ra. In fact, the highest Ra attainable
in an apparatus of a given size is usually quite limited for a fluid
such as water. Because of the unknown properties of the core melt
at high temperatures, the researchers were unable to reproduce
adequate accident conditions. Moreover, it is not a simple task to
measure Pr dependence in convectional turbulence by experi-
ments. Therefore, numerical simulations are required to predict the
turbulent flows especially at very high Ra [7,8]. In Ref. [9], the effect
of the Pr on the Nu distributions for different geometries was
demonstrated. In their work, Ra spanned from 106 to 1012 and Pr
from 0.6 to 7. The authors found that the influence of Pr is small in
convection-dominated regions and much more significant in
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Nomenclature

c particle speed
C Smagorinsky constant
D effective thermal diffusivity
u! fluid velocity vector
e!k discrete velocity
Fk, Gj source terms in Eqs. (7) and (21)
g! gravity
gk, fj distribution function for velocity and temperature field
geq

k ; f
eq
j equilibrium distribution function for velocity and

temperature field
H height of simulation domain
v! equilibrium velocity vector

p pressure
Nu Nusselt number
Ec Eckert number
Pr Prandtl number
Be Bejan number
Ra Rayleigh number
fab strain rate tensor
Stotal total entropy generation number
S entropy generation number
T simulation time interval
Lb length of the boundary

x! phase space

Greek symbols
Dx, Dy grid spacing in x and y direction
Dt time step
Q dimensionless temperature
n effective kinematic viscosity
m effective dynamic viscosity
su relaxation time for velocity
sQ relaxation time for temperature
r density
a thermal diffusivity
uk, ck the weights for equilibrium distribution function
D filter width
4 irreversibility distribution ratio

Subscripts and superscripts
D thermal
m viscous
j, k discrete velocity direction
0 initial index
- filter operator or average
t turbulent
a, b spatial index
U, T global, total

Table 1
Time-boundary-averaged Nusselt number NuT, b with different grid resolutions.

Ra 256� 256 512� 512

106 a 12.6300 12.6300
b 6.3352 6.3351
c 10.4603 10.6983

107 a 20.4309 20.4309
b 7.1514 7.2550
c 15.6576 15.1810

108 a 28.2318 28.2320
b 8.7980 8.7981
c 22.9925 22.0424

109 a 42.3476 42.3479
b 11.1717 11.4835
c 35.7966 34.1332

Note. a, NuT, b at the top wall; b, NuT, b at the bottom wall; c, NuT, b at the left wall.
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conduction-dominated regions. Regardless, the influence of the Pr
on fluid behavior grows with the increase of the Ra. Dinh and
Nourgaliev reviewed the turbulence modeling in large volumetri-
cally heated liquid pools [13]. The attention was focused on
different k–e models as well as on Reynolds stress models. Wörner
et al. made a comprehensive study of turbulence in an internally
heated convective fluid layer using direct numerical simulation
[14]. The Pr was 7 and the Ra in the range of 105–109. The authors
showed that the k–e models are not suitable for the simulation of
turbulent natural convection with internal heat generation. In
order to save computational resources with the time-consuming
direct numerical simulation, they had to initiate from a parabolic
temperature profile and to stop before an overall thermal equilib-
rium being achieved. Recently, Horvat et al. pointed out that such
way would lead to a severe underprediction of overall heat transfer
over the simulation domain [8]. And they proposed a large-eddy
model as a remedy [8]. The simulations were carried out at Ra of
106–1011 and Pr between 0.25 and 0.6. The newest report can be
found in Ref. [5], which focused on transient turbulent natural
convection heat transfer from a volumetric energy generating
source placed inside a cylindrical enclosure filled with low Pr
number fluid (Pr¼ 0.005).

Despite the significant differences in their appearances and
technical details, numerical models employed in previous
studies almost are based on the solution of the Navier–Stokes-
type equations. These methods rest on the spatial and temporal
discretizations of the macroscopic equations. During the past
two decades, a mesoscopic method, the lattice Boltzmann
method (LBM) has matured as an efficient alternative and
promising numerical scheme for simulating and modeling
complicated physical systems [15–18]. Unlike the conventional
numerical methods based on discretizations of macroscopic
continuum equations, the LBM is based on microscopic models
and mesoscopic kinetic equations for fluids. The kinetic nature of
LBM enables itself very suitable for fluid systems [17]. Especially,
the LBM has been compared favourably with the spectral
method [19], the artificial compressibility method [20], the finite
volume method [21,22] and finite difference method [23]. All
quantitative results further validate excellent performances of
the LBM not only in computational efficiency but also in
numerical accuracy [24]. Using the LBM to simulate two
dimensional turbulent natural convection due to internal heat
generation was firstly conducted by Shi et al. [25]. The simula-
tions were carried out at 106� Ra� 1012 and Pr between 0.25
and 0.6. Recently Liu et al. developed an improved large-eddy-
based thermal lattice Boltzmann model for such turbulent
natural convection [7]. They simulated the natural convection
flow with internal heat generation in a square cavity with
Ra¼ 106�1013 and Pr¼ 0.25� 0.6.

As is seen, all of the studies in the above cited literature, there is
no study that is conducted to analyze entropy generation in
turbulent natural convection due to internal heat generation,
although it has been demonstrated that the entropy generation
analysis is a powerful tool for optimal design of thermal systems
[26–34]. The purpose of this study is twofold: The first one is to



Fig. 1. Rayleigh number vs time-boundary-averaged Nusselt number on the top
boundary.

Fig. 3. Rayleigh number vs time-boundary-averaged Nusselt number on the left
boundary.
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investigate the behaviors of local and total entropy generation rates
in turbulent natural convection due to internal heat generation. In
order to obtain the necessary macro-quantities, such as tempera-
ture and velocity, which are the inputs for the entropy generation
analysis, a unified improved thermal large-eddy-based lattice
Boltzmann model is designed following the line of our previous
work [35]. The models proposed in Refs. [7,25] can be derived from
the present model. Furthermore the nonphysical effects of the
models in Refs. [7,25] are canceled in the present model. To the best
knowledge of the present author, this is the first attempt to
combine the LBM and the entropy generation analysis to study
a complex thermal system, which is the second purpose of the
present study.
2. Governing equations

The thermal flow is governed by the unsteady Boussinesq
equations which read [7,8,25]

V$ u! ¼ 0 (1)

v u!

vt
þ u!$V u! ¼ �Vpþ nD u!þ g!bðQ�Q0Þ (2)

vQ

vt
þ u!$VQ ¼ aDQþ I (3)

where r, p and a are the density, the pressure and the thermal
diffusivity of working fluid, respectively. H is the length of the
Fig. 2. Rayleigh number vs time-boundary-averaged Nusselt number on the bottom
boundary.
domain. The gravity g! downward. The Rayleigh number is defined
as Ra¼ cprgbIH5/a2n, where I is the volumetric heat generation; cp is
the specific heat and Q is the temperature dilatation.

With the aid of the normalizing characteristic quantities, i.e.
length with H, velocity with (a/H)Ra0.5, pressure with r(a/H)2Ra,
temperature with (Q–Q0)/DQ and time with H2/aRa�0.5, the cor-
responding dimensionless equations read [7,8,5]

V$ ~u
!
¼ 0 (4)

v ~u
!

vt
þ ~u
!

$V ~u
!
¼ �V~pþ ~nD ~u

!
þ Pr ~Q

~g
!��� ~g
!��� (5)

v~Q

vt
þ ~u
!

$V~Q ¼ ~DD~Qþ ~D (6)

where ~n ¼ PrRa�0:5, ~D ¼ Ra�0:5. For simplification, the tilde, which
denotes dimensionless quantities, is omitted in the rest part. A
detailed description of the normalizing procedure could be found
in Ref. [25].
3. Unified lattice Boltzmann model

3.1. Flow field

The evolution equation for the flow field reads

gkð x!þ c e!kDt; t þ DtÞ � gkð x!; tÞ

¼ �s�1
u

h
gkð x!; tÞ � gðeqÞ

k ð x!; tÞ
i
þ DtFk (7)

where e!k is the discrete velocity direction. c¼Dx/Dt is the fluid
particle speed. Dx, Dt and su are the lattice grid spacing, the time
step and the dimensionless relaxation time for the flow field
respectively. The force term Fk must satisfy

X
k�0

Fk ¼ 0;
X
k�0

Fk e!k ¼ F
!

hPrQ
g!

j g!j
(8)

As Guo et al. demonstrated [36], the form of Fk must be chosen
appropriately to recover correct equations of hydrodynamics. In the
present model, the force term Fk is given as



Fig. 4. Time-volume-averaged Bejan number and time-averaged total entropy generation number vs Rayleigh number, Pr¼ 0.6 and Ec¼ 10�10.
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Fk ¼ uk

�
1� 1

2su

��
c e!k$ F

!

c2
s
þ ðc e!k$ v!Þðc e!k$ F

!Þ
c4

s
� v!$ F

!

c2
s

�
(9)

cs is the speed of sound and the equilibrium velocity v! is defined as

v! ¼
X
k�0

c e!kgk þ
Dt
2

F
!

(10)

It should be pointed out that the forms of v! and Fk used in Refs.
[7,25] would produce nonphysical terms of order OðV$ F

!Þ and
OðV$ð F

!
u!ÞÞ in the continuum equation and the momentum equation

respectively [36,37], although the magnitudes of these nonphysical
terms are very small in most previous simulations [36–38].

gkð x!; tÞ is the distribution function at node x! and time t with
velocity e!k, and gðeqÞ

k ð x!; tÞ is the corresponding equilibrium
distribution. The equilibrium distribution in the present model is
defined by

gðeqÞ
k ¼ ckpþ sk (11)

where

sk ¼ uk

"
c e!k$ v!

c2
s
þ ðc e!k$ v!Þ2

2c4
s

� j v
!j2

2c2
s

#
(12)

the parameter ck is determined by the moment constraints [35],
which lead
Fig. 5. The maximum of entropy generation number vs Rayleigh number, Pr¼ 0.6 and
Ec¼ 10�10.
ckjðks0Þ ¼ uk=c2
s ; ckjðk¼0Þ ¼ ðu0 � 1Þ=c2

s (13)

the values of uk for one-, two- and three-dimensional problems can
be found in Ref. [17].

The effective kinematic viscosity is determined by

n ¼ ðsu � 0:5Þc2
s Dt (14)

and n can be split into two parts:

n ¼ n0 þ nt (15)

where n0 is the initial kinetic viscosity, and the turbulent eddy
viscosity nt is obtained by [7,8]

nt ¼ ðCDÞ2
�
jf
���2þPr

Prt
VQ$

g!

j g!j

�1=2

(16)

The first term in Eq. (16) represents stress forces while the second
term represents buoyancy. The constant C is called the Smagorinsky
constant and is adjustable. In the present study, we take C¼ 0.1 and
the turbulent Prandtl number Prt is set to 0.4, which are identical
with that in Ref. [7]. And D is the filter width [8]. jfj is the
magnitude of the large scale strain rate tensor

���f��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fabfab

q
(17)

where fab ¼ ðvaub þ vbuaÞ=2, and the over bar indicates filtered
values. In the next section we will show in detail how to obtain the
value of jfj through the LBM because this term will also be used in
entropy generation calculation. After some tedious algebraic
operations one can get:

su ¼ s0 þ
ðCDÞ2

c2
s Dt

�
jf
���2þPr

Prt
VQ$

g!

j g!j

�1=2

(18)

where s0 ¼ n0=ðc2
s DtÞ þ 0:5.

The velocity and pressure are given by

u! ¼
X
k�0

c e!kgk þ
Dt
2

F
!

(19)

p ¼ c2
s

1� u0

"X
ks0

gk þ s0ð u!Þ
#

(20)

3.2. Temperature field

The evolution equation for the temperature field reads



Fig. 6. Variation of time-volume-averaged Bejan number versus time step: Ra¼ 106(left), Ra¼ 109(center) and Ra¼ 1012(right) with Pr¼ 0.6 and Ec¼ 10�10.
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fj
�

x!þc e!jDt;tþDt
	
� fjð x!;tÞ ¼�s�1

Q

h
fjð x!;tÞ� f ðeqÞ

j ð x!;tÞ
i
þDtGj

(21)

where sQ is the dimensionless relaxation time for temperature field
and

f ðeqÞ
j ¼ Q

b

�
1þ b

e!j$ u!

2c

�
(22)

Gj ¼
D
b

�
1þ b

e!j$ u!

2c

�
(23)

where b is the number of discrete velocity directions for the
temperature field [39,40]. The temperature Q is obtained in terms
of the distribution function by

Q ¼
X

j

fj (24)

The effective thermal diffusivity D is given by

D ¼ 2c2ðsQ � 0:5ÞDt=b (25)

Similar as n, the effective thermal diffusivity D also can be split into
two parts:

D ¼ D0 þ Dt (26)

D0 is the initial thermal diffusivity. The turbulent thermal diffu-
sivity Dt¼ nt/Prt. And

sQ ¼ sQ0
þ bDt

2c2Dt
(27)

where sQ0¼ bD0/(2c2Dt)þ 0.5.
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Through the Chapman–Enskog procedure [7,35,39,40], macro-
dynamical Eqs. (4)–(6) can be derived from above evolving equa-
tions. For a two-dimensional domain, if the D2Q9 lattice model [25]
is chosen for the flow field and the D2Q5 lattice model [7] is chosen
for the temperature field, then the present model reduces to the
models introduced in Refs. [7,25], and the nonphysical errors in
previous models are canceled. The advantages of the present
model, such as saving computational resources, have been pre-
sented in our previous study [35].

4. Entropy generation

The entropy generation number in turbulent flow is given by
[26,41]:

S ¼ ðVQÞ2þ4
���fj2 (28)

where the irreversibility distribution ratio 4¼ PrRaEcQ0 [42], and
Ec is the Eckert number [41].

Apparently, it is inconvenient to calculate jfj (Eq. (17)) directly by
conventional numerical methods due to its complex form of spatial
derivative [7,43]. However, in the LBM, jfj can be calculated easily
through computing the magnitude of the momentum fluxes Q [7]����f
���� ¼ 3

2suDt

����Q
���� (29)

and Q can be obtained by

Q ¼
X

k

e!ka e!kb



gk � geq

k

�
(30)

Recognizing the first term in Eq. (28) as reflecting the entropy
generation due to thermal diffusion and the second due to viscous
dissipation, the entropy generation number can be expressed as
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S ¼ SD þ Sm (31)

where the subscripts D and m are used to indicate the effects of
thermal diffusion and viscous dissipation respectively. Usually SD is
referred to as Heat Transfer Irreversibility HTI and Sm as Fluid Fric-
tion Irreversibility FFI [26]. The Bejan number Be is given as
[26,42,44]:

Be ¼ SD

S
¼ HTI

HTI þ FFI
(32)

When Be [ 0.5, the irreversibility due to heat transfer dominates,
whereas Be� 0.5 the irreversibility due to viscous effect domi-
nates. When Be¼ 0.5 heat transfer and fluid friction entropy
generation are equal.

The total entropy generation number is defined as [26]

Stotal ¼
Z
U

SvU (33)

where U means the global computational domain.

5. Model validation

In the present study, entropy generation numbers in turbulent
natural convection driven by internal heat in a square cavity are
investigated for a wide range of Ra, Pr and Ec: 106� Ra� 1012,
0.6� Pr� 6 and 10�10� Ec� 10�6. The boundary conditions are
taken to be u! ¼ 0 and Q¼ 0 on all solid walls; the initial conditions
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are set to be u! ¼ 0; Q¼ 0 for all cases. Because the distribution
functions at the walls are unknown, the non-equilibrium extrapo-
lation scheme [7] used in our previous studies [45–47] is employed
to treat flow and temperature boundary conditions, namely

gkjw¼ geq
k

���
w
þgnon�eq

k

���
w
¼ geq

k

���
w
þ



gkjf�geq
k

���
f
þO



e2
��

(34)

fj
���
w
¼ f eq

j

���
w
þf non�eq

j

���
W
¼ f eq

j

���
W
þ



fj
���
F
�f eq

j

���
F
þO



e2
��

(35)

where the subscript w and f represent the wall boundary grid and
neighbouring fluid grid respectively. e is a small quantity [7].

The D2Q9 and the D2Q5 lattice models are employed to simu-
late the fluid and thermal distributions respectively, with the grid
resolutions 256� 256 and 512� 512. As Table 1 shows that the grid
resolution 256� 256 is enough to produce grid-independent
numerical results.

Firstly, the numerical simulation was validated by comparing
the time-boundary-averaged Nusselt number NuT, b obtained by the
present model with previous data [7,8]. The comparison results are
plotted in Figs. 1–3. NuT, b is defined as [8]

NuT ;b ¼
Z
Lb

Z
T

Nuð x!; tÞdtd x! (36)

It can be found that the present results for Ra� 1010 agree well with
those in Refs. [7,8], which verifies and validates the present model.
With the increasing of Ra, the effect of the eddy viscosity becomes
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significant so that the deviations of NuT, b between different models
on the boundaries set in [7,8].
6. Results and discussions

As Eq. (28) shows, the entropy generation number depends on
the Rayleigh number Ra, the Prandtl number Pr and the Eckert
number Ec. The behaviors of various results are considered by
assuming one of these parameters varying while the others are
fixed. Because the flow field becomes unstable when Ra� 108, in
the rest part of this paper, if not specified, the instant values, such as
the entropy generation number S, are measured at time step
7�105. At that time the unsteady flows with Ra� 108 are fully
developed, namely the stable time-averaged macro-quantities can
be measured [7,25].
6.1. Variation in Rayleigh number

As previous studies [26,42,44] pointed out: the characteristics of
entropy generation of natural convection flow are dominated by
the Rayleigh number Ra. Figs. 4 and 5 show the time-volume-
averaged Bejan number BeT, the time-averaged total entropy
generation number Stotal, T and the maximum of entropy generation
number Smax versus various Rayleigh numbers, with fixed values of
the Prandtl number Pr¼ 0.6 and the Eckert number Ec¼ 10�10.
When Ra� 1010, the time-volume-averaged Bejan number almost
equals one and then decreases quickly against Ra increasing.
Though the maximum of entropy generation number Smax increases
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quickly with Ra, the time-averaged total entropy generation
number Stotal, T changes in the opposite trend.

In order to explain these phenomena clearly, three cases
Ra¼ 106, Ra¼ 109 and Ra¼ 1012 are chosen in this subsection,
which represent three different states of natural convection due to
internal heat generation [7,8]: the steady laminar symmetry
(Ra¼ 106), the unsteady asymmetric transition (Ra¼ 109) and the
full turbulence (Ra¼ 1012), as Figs. 6–9 illustrate. When Ra is not big
enough, the volumetric heat generation is small. Consequently the
motion of working fluid due to internal heat generation is quite
slow. The entropy generation is mainly caused by heat transfer
irreversibility HTI, so BeT approaches one. While Ra> 1010, the
motion of working fluid is enhanced significantly together with the
volumetric heat generation, agreeing with the characteristics of
NuT, b. Therefore the fluid friction irreversibility FFI becomes the
domination and Be� 0.5. It can be seen from Fig. 6 that BeT tends
towards a constant value quickly at the steady laminar symmetric
state, whereas for the higher Rayleigh number Ra¼ 109, an obvious
long-time oscillation of BeT can be observed before reaching its
constant value, and for the full turbulent state BeT always oscillates
around its time-volume-averaged value. The behaviors of the time-
averaged entropy generation numbers are identical to that of BeT.
Figs. 7–9 display the maps of temperature distributions and the
entropy generation numbers when Ra¼ 106, Ra¼ 109 and
Ra¼ 1012. From these pictures it is obvious that the motion of
working fluid is enhanced significantly together with the volu-
metric heat generation, which makes the distributions of temper-
ature more uniformly and the maximum of temperature smaller.
One also can see that in natural convection due to internal heat
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Fig. 13. Time-volume-averaged Bejan number and time-averaged total entropy generation number vs Prandtl number, Ra¼ 1012 and Ec¼ 10�10.
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generation, the entropy mainly generates near the boundaries,
especially in the vicinity of the top boundary. When Ra increases,
the small-scale structures become increasing and much finer with
the enhancement of motion of working fluid, which make the zone
with significant temperature and/or velocity gradients smaller and
narrower, confined to the neighborhood of the boundaries.
Consequently even though the maximum entropy generation
number of higher Ra is much bigger than that of lower Ra, the time-
averaged total entropy generation number of higher Ra is fairly
smaller than that of lower Ra due to the zone with significant
Fig. 14. The maximum of entropy generation number vs Prandtl number, Ra¼ 1012 and
Ec¼ 10�10.
entropy generation becomes smaller and narrower when Ra
increases.

Fig. 10 illustrates the maps of the Bejan number, the heat
transfer irreversibility and the fluid friction irreversibility when
Ra¼ 1012, which typify that of the cases dominated by viscous
dissipation. As seen in Fig. 10, over the whole simulation domain
except near the boundaries, Be� 0.5, which indicates that the heat
transfer irreversibility is dominative in the vicinity of the bound-
aries though the inner of the simulation domain is dominated by
the fluid friction irreversibility. This phenomenon is caused by the
very thin layer with high temperature gradient near the bound-
aries. Inside the layer the entropy generation due to temperature
gradient plays the most important role. As Figs. 9 and 10 show,
when Ra¼ 1012, the main features of the maps of the entropy
generation number and the fluid friction irreversibility are almost
identical, which agree with the result that BeT� 0.5 for high Ra. For
the cases Ra� 1010, the Bejan number almost equals one not only in
the inner of the domain but also in the vicinity of the boundaries.
The fluid friction irreversibility can be ignored compared with the
heat transfer irreversibility. Therefore we do not show the maps of
Be, HTI and FFI for such cases.
6.2. Variation in Prandtl number

To reveal the effect of the Prandtl number Pr on entropy
generation of natural convection due to internal heat generation,
the cases with different values of the Prandtl number 0.6� Pr� 6
but fixed values of the Rayleigh number Ra¼ 1012 and the Eckert
number Ec¼ 10�10 are chosen in this subsection, which can typify
all cases in this study.



Fig. 15. Time-volume-averaged Bejan number and time-averaged total entropy generation number vs Eckert number, Ra¼ 1012 and Pr¼ 0.6.
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Figs. 11 and 12 illustrate the maps of temperature distributions
and entropy generation numbers when Pr¼ 2 and Pr¼ 6. From
Figs. 9–12, it is clear that the increasing Pr enhances the heat
transfer together with the motion of working fluid. The maximum
of temperature decreases against Pr increasing. Furthermore, the
time-volume-averaged Bejan number, the time-averaged total
entropy generation number and the maximum of entropy gener-
ation number decrease quickly against Pr increasing, as Figs. 13
and 14 show. Such results are expected according to what
mentioned in the above subsection: the enhancement of motion
of working fluid makes the distributions of temperature more
uniformly and the gradients of velocity smaller, which reduce the
time-averaged total entropy generation number and make the
heat transfer irreversibility to decrease more quickly than the fluid
friction irreversibility.
6.3. Variation in Eckert number

The influence of the Eckert number Ec, which is used to char-
acterize dissipation caused by friction, on entropy generation is
straightforward because it only affects the magnitude of the fluid
friction irreversibility. Higher Ec means higher FFI. The cases with
different values of the Eckert number 10�10� Ec� 10�6 but fixed
values of the Rayleigh number Ra¼ 1012 and the Prandtl number
Pr¼ 0.6 are chosen in this subsection to clarify such effect.

Figs. 15 and 16 illustrate the time-volume-averaged Bejan
number, the time-averaged total entropy generation number and
the maximum of entropy generation number versus various Eckert
Fig. 16. The maximum of entropy generation number vs Eckert number, Ra¼ 1012 and
Pr¼ 0.6.
numbers. One can see from these figures that the time-volume-
averaged Bejan number approaches zero against Ec increasing,
however, the time-averaged entropy generation number and the
maximum of entropy generation number increase almost linearly
when Ec> 10�8, which agree with Eq. (28) because comparing with
the fluid friction irreversibility the heat transfer irreversibility is so
small that can be ignored when Ec> 10�8.

7. Conclusion

Entropy generation in turbulent natural convection due to
internal heat generation was calculated numerically by using an
improved lattice Boltzmann model proposed in this study. The
influences of the Rayleigh number, the Prandtl number and the
Eckert number on entropy generation are evaluated in detail for the
first time. It was found that when Ra� 1010, the time-volume-
averaged Bejan number almost equals one and then decreases
quickly against Ra increasing. Though the maximum of entropy
generation number increases quickly with Ra, the time-averaged
total entropy generation number changes in the opposite trend.
Results showed that for increasing Rayleigh number viscous irre-
versibility begins to dominate heat transfer irreversibility. Entropy
generation is spread over the whole domain at small Rayleigh
numbers, but is confined to the neighborhood of the boundaries at
high Rayleigh numbers. The numerical results also showed the
time-volume-averaged Bejan number, the time-averaged total
entropy generation number and the maximum of entropy genera-
tion number decrease quickly against Pr increasing. Through this
study it was found that the time-averaged total entropy generation
number and the maximum of entropy generation number increase
almost linearly when Ec> 10�8. But the time-volume-averaged
Bejan number decreases quickly against Ec increasing.
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